Clotrimazole inhibits hemoperoxidase of Plasmodium falciparum and induces oxidative stress. Proposed antimalarial mechanism of clotrimazole.
نویسندگان
چکیده
The mechanism of antimalarial activity of clotrimazole was studied placing emphasis on its role in inhibiting hemoperoxidase for inducing oxidative stress in Plasmodium falciparum. Clotrimazole, in the presence of H2O2, causes irreversible inactivation of the enzyme, and the inactivation follows pseudo-first order kinetics, consistent with a mechanism-based (suicide) mode. The pseudo-first order kinetic constants are ki = 2.85 microM, k(inact) = 0.9 min(-1), and t(1/2) = 0.77 min. The one-electron oxidation product of clotrimazole has been identified by EPR spectroscopy as the 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) adduct of the nitrogen-centered radical (aN = 15 G), and as DMPO protects against inactivation, this radical is involved in the inactivation process. Binding studies indicate that the clotrimazole oxidation product interacts at the heme moiety, and the heme-clotrimazole adduct has been dissociated from the inactivated enzyme and identified (m/z 1363) by mass analysis. We found that the inhibition of hemoperoxidase increases the accumulation of H2O2 in P. falciparum and causes oxidative stress. Furthermore, the inhibition of hemoperoxidase correlates well with the inhibition of parasite growth. The results described herein indicate that the antimalarial activity of clotrimazole might be due to the inhibition of hemoperoxidase and subsequent development of oxidative stress in P. falciparum.
منابع مشابه
Potent antimalarial activity of clotrimazole in in vitro cultures of Plasmodium falciparum.
The increasing resistance of the malaria parasite Plasmodium falciparum to currently available drugs demands a continuous effort to develop new antimalarial agents. In this quest, the identification of antimalarial effects of drugs already in use for other therapies represents an attractive approach with potentially rapid clinical application. We have found that the extensively used antimycotic...
متن کاملClinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملEnhancement of heme-induced membrane damage by the anti-malarial clotrimazole: the role of colloid-osmotic forces.
Two recent studies have demonstrated that clotrimazole, a well-known potential antifungal agent, inhibits the in vitro growth of chloroquine-resistant strains of the malaria parasite, Plasmodium falciparum. In a previous study, we suggested that clotrimazole acts as an anti-malarial agent by inhibiting heme catabolism in the malaria parasite and by enhancing heme-induced membrane damage. In thi...
متن کاملClinical Pharmacology of the Antimalarial Quinine in Children
Quinine is the best studied drug for treating severe malaria in very young children. Quinine may be administered in pregnancy and, at therapeutic doses, malformations have not been reported. Some strains of quinine from Southeast Asia and South America have become resistant. Quinine is the treatment of choice for the drug-resistant severe Plasmodium falciparum. The antimalarial mechanism of qui...
متن کاملCatechin Isolated from Garcinia celebica Leaves Inhibit Plasmodium falciparum Growth through the Induction of Oxidative Stress
BACKGROUND Resistance of antimalarial drugs to Plasmodium falciparum has become a major concern in malaria eradication. Although it is also affected by several socioeconomic factors, a new antiplasmodial agent is needed for a global malaria control program. OBJECTIVE In this study, we attempted to uncover the antiplasmodial properties of Garcinia celebica, an Indonesian medicinal plant, along...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 50 شماره
صفحات -
تاریخ انتشار 2005